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Observation of stochastic coherence in coupled map lattices
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Chaotic evolution oftructuresin a coupled map lattice driven by identical noise on each site is stydied
structure is a group of neighboring lattice sites for which values of the dynamical variable follow a certain
predefined patteyn The number of structures is seen to follopawer-law decayvith length of the structure
for a given noise strength. An interesting phenomenon, which westathastic coherengés reported in
which a rise ofbell-shapedtype in abundance and lifetimes of these structures is observed for a range of
noise-strength value§S1063-651X97)03803-9

PACS numbes): 05.45+b, 47.52+i

The coupled map lattic€CML) model has been observed we choose a spatial pattern where the difference in the values
to exhibit diverse spatiotemporal patterns and structltgs of the variables of neighboring sites within the structure is
and serves as a simple model for experimental systems sutdss than a predefined small positive number, say.e.,
as Rayleigh-Beard convection, Taylor-Couette flow, |x,(i)—x(i*1)|< 5. We call § thestructure parameteWe
Belousov-Zhabotinsky reaction, ef@]. A major interest is look for such patterns, or coherent structures, to appear in the
in understanding formation of structures, localized in bothcourse of evolution of the model given by Ed).
space and time, in turbulent flui@]. The role of fluctuations We now present our main observations. Valueguofe,
in onset, selection, and evolution of such patterns and stru@ndL are chosen so that the resultant dynamics of the system
tures has been studied in some deft4jb]. In this paper we is chaotic. Coherent structures with lengtt8 (site§ and
report a novel phenomenon observed in the dynamics dffetime <2 (time steps are disregarded in our observation.
structures in a chaotically evolving one-dimensional CMLValues forW are chosen within the rand®,1]. Figure 1
driven by identical noise. By structurewe mean a group of shows a plot(on log-log scalg of distribution of number
neighboring sites whose variable values follow a certain pren(l) vs lengthl of structures for different values &%, with
specified spatial pattern. Distribution of these structures dury =4, ¢=0.6, §=0.0001, and L=10000, and open-
ing evolution of the lattice shows that their numbers exhibitboundary conditions are used. The power-law nature of de-
power-law decaywith length of the structure for a given cay ofn(l) is clearly evident, and has a form
noise strength, with an exponent which is a function of noise
strength. It is observed that the average length of these struc-
tures shows a bell-shaped curve with a characteristic peak, as
a function of noise strength. Similar behavior is observed for
average lifetime of these structures during their evolution, 10° -
within the same range of noise values. We call this phenom-
enonstochastic coherence 3

We consider a one-dimensional CML of the form .
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. e . x 0
X+2(1) = (1=8)F (i) + 5[ F (i = 1)+ F(x(i +1))] z
+ 7, o -
wherex,(i), i=1,2,... L is the value of the variable lo- 107* [
cated at sita at timet, #, is the additive noiseg is the
(nearest neighbicoupling strength, and is the size of the 10-5 F

lattice. Logistic functionF(x)= ux(1—x) is used as local
dynamics governing nonlinear site evolution with nonlinear-
ity parameteru. We have used both open-boundary condi-
tions x;(0)=x;(1), x(L+1)=x;(L), and periodic-bound-
ary Cond't'onsxt(L+'):_Xt(')' for_ our system. For noise FIG. 1. Plot of variation of numben(l) of structures with
7. we have used a uniformly distributed random numbefiengin| for a lattice with sizel =10 000, for different values of
bounded betweer W and +W, whereW is defined as the noise strengthw as indicated. Parameters chosen are coupling
noise-strengtiparameter. strength parameter=0.6, structure parametér 0.0001, and non-
We define astructureas a region of space in which the Jinearity parameter.=4. Open-boundary conditions are used. Data
dynamical variables at sites within this region follow a pre-are obtained for 100 000 iterates per initial condition and four initial
defined spatial patter®]. To study coherence in the system conditions.
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T T T value 0.6. It may be noted that the minimum®fin Fig. 2
also occurs folWV quite close to this value.

We call the phenomenon observed abatechastic co-
herence This is similar to the stochastic resonance phenom-
enon which shows a bell-shaped behavior of temporal re-
sponse as a function of noise strength However, one may
note that our system does not have any intrinsic length scale,
whereas in stochastic resonance noise resonates with a given
time scale; hence our use of the word coherence rather than
resonancé8]. In stochastic resonance noise transfers energy
to the system at a characteristic frequency, whereas in sto-
chastic coherence noiseduces coherenca the system. At
this stage it is not clear to us how noise is inducing coher-
ence in the system. However, absence of any length scale
over the entire range of noise seems to indicate existence of
weak self-organization in the system induced by noise.

In this context it should be noted that if a uniform-deviate

0.2 0.4 0.6 0.8 1.0 random number is taken as site variable, then the probability
W of a site to belong to a structure of length is
ps()=~1(28)'"*(1—26)?, whered is the structure param-
FIG. 2. Variation of exponentr [relation (2)] with noise  eter introduced earlier. Hence the number of such structures

strengthW plotted for parameter values as in Fig. 1. in a lattice of size L is given by ngl)=
L(26)'"1(1—26)2. This shows an exponential decay of the
n(l)ecl ¢, (2)  number of such structures with length, which is to be con-

trasted with the power-law forrt2) obtained for our lattice.
where « is the power-law exponent. This indicates that the It is possible to show how noise helps to reduce instability
system does not have any intrinsic length scale. It may béf the structures, thereby increasing their abundance. Let us
noted that in the absence of noid&/€ 0) the decay is mani- consider stability matrixM of a homogeneous state
festly exponential6]. Exponent (i.e., slope of the log-log {--- Xt, Xt,X, ...} (this may be thought of as a large
plot in Fig. 1) is seen to depend on noise-streniih This structure withé=0 for simplicity). At time t+1 the matrix
fact is corroborated in Fig. 2, which shows a plot@fvs  takes the simple fornM,,,;=JF{, whereJ stands for the
W for the same parameter values as in Fig. 1. The exponediamiliar tridiagonal matrixwith diagonal elements1¢ and
is exhibiting a clear minimum for values &% around 0.6. off-diagonal elementse/2 on either side and F{=
We define average lengthl of a structure as F'(x)(=dF/dx)=u(1—-2x). After two time steps, we
I==In()/=n(l). In Fig. 3 we plot variation of with W for ~ 9et the stability matrix for three time steps &&=
values of parameters as in Fig. 1. The plot exhibitsesl- ~ Mt+1Ms oM a=3F(F{ (F{,,=JI°F{p?[(1-2F){1-2
shapednature within a fairly narrow range oV around uF(1—F)}+6uni(1—-2F)—27{1+u(1-6F+6F)}
—Aund—2n,1(1—-2F)+4nm1]. For &correlated
noise with uniform distribution and zero meanmhich is the
T T T J case herg after averaging the above expression over noise
distribution one gets nonzero contribution due to noise only
from the term quadratic iny:

(S3)=3(F))?ul1-2uF(1-F)+6u(n)], (3

where( ) denotes averaging over noise. For our lattice with
localized structures in the backdrop of spatiotemporal chaos
we found the invariant density to be no longer symmetric,
with larger weight for values of variable above 0.5. Averag-
ing expression(3) over this density makes the term
1-2uF(1-F;) negative. Adding positive contribution of
noise to it results in reduction of eigenvalue of the matrix
S; and hence consequent reduction in instability of the state.

To study evolutionary aspects of these coherent structures
we obtained distribution of number(r) of structures vs
0 0.2 0.4 0.6 0.8 1 their lifetimesr for differentW. This is shown in Fig. 4on

W a log-linear scalg It exhibits decrease of(7) with 7 with a

stretched exponentidl/pe of decay having a form

FIG. 3. Plot of variation of average IengEof structure with
noise strengtW, with parameters as stated in Fig. 1. n(7)<exp(—consi 77), (4
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lifetime 7, with conditions as in Fig. 1.

of | with ¢ is also investigated. It is found thatincreases
monotonically withe for all W. This fact is quite contradic-
tory to what is expected from,,. This indicates that the
Lyapunov exponent alone cannot be used for proper charac-
terization of spatiotemporal features of the system. We have
also obtained the power spectrum of the time series of the
dynamical variable for a given site. The plot does not show
any characteristic frequency and supports chaotic behavior.
In addition, we have calculated the power spectrum of values
xi(i), i=1,... L at a given time. The nature of the spec-
trum confirms our earlier observation that the system does
not have any intrinsic length scale. It may appear that the
behavior of our system is similar to the spatiotemporal inter-
mittency phenomenofl0Q]. However, our system does not
show any regular burst-type featu@iedicative of intermit-
tency) in time; as already noted, the power spectrum of time
series does not have any distinctive peak for the entire range
of noise strength. Thus what we observe is development of
appreciable coherence induced by noise in the system under-
going spatially intermittent and temporally chaotievolu-
tion.

On quite a few occasions the entire lattice is seen to
evolve as a single coherent structure to within the structure
parameters. We have studied the lifetime of these coherent

where 8 depends orW. We define average Iife_ﬂm?of a /
structure ag =3 m(7)/=n(7). In Fig. 5 we plotr vs W for  Structures. Full lattice coherence appears Wrabove a
parameter values as in Fig. 4. The graph also shows a beiy2lué around 0.4. The interesting thing is that occasionally
shaped feature with maximum faN around 0.6. Thisw this state is seen to persist for fairly long duratidgastimes
value is close to that corresponding to the extrema in Figs. &S 1ong as 200 time steps or mpreut eventually the coher-
and 3. ence is seen to break up. This demonstrates that for our sys-
In order to ascertain the chaotic nature of system evolul€M the synchronized state is not a stable attractor.
tion we have calculated Lyapunov exponent spectra for our However, in rare instances our system has been found to
system. We find a number of Lyapunov exponents to beget into an apparently synchromzed sfcate after a very large
positive, implying that the underlying evolution is chaotic. time (iarger than 10steps. This is obtained because of the
Maximum Lyapunov exponent,, Shows a minimum finite accuracy of computation which cannot distinguish an
around noise strength 0[8]. We have studied variation of Unstable synchronized state from a stable [drig. As dem-
N\ spectrum with coupling strength. \ s remains fairly pns:trated in the foIIovx{lng, for oursystgm _th|s type_of b_ehav-
constant for 0.2 s<0.8 for the entire range ai. Behavior 10T iS an artifact resulting due to combination of finite size of
the lattice and finite accuracy. Let us denotelbpe average
of time steps required for first occurrence of full lattice co-
herence, the average taken over different initial conditions.

I 1 1 I
5.5 I i We have studied variation of with structure parametes$
for a fixed lattice sizé-, which shows a definitive power law
5 | - of the form T « 677, where vy is the power-law exponent.
This indicates that the synchronized state, i.e., full lattice
45 | coherent structure witth=0, cannot be reached. We have
also investigated vs L variation for a fixeds. We see a
4 | power-law behavior of form
1
35 | - TsxL?, )
3 - where v is the power-law exponent. Thus even full lattice
coherence with finited cannot be achieved ds—o°.
25 . We now show that the existence of full-lattice coherence
with nonzeroé (distinct from synchronized statén a finite
5 | i | I lattice is essentially a consequence of power-law variation

FIG. 5. Variation of average lifetime of structures with noise
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(2) of n(l) with I. From relation(2) the probability of a site

to belong to a structure of lengthis ps(1)=l.l~¢=11"<
Therefore the probability of a site to belong to a structure of
length =L is Po=Pys(=L)xS “I1" o~ [7dlI1" %27

(for >2, which is the case in the entire range of our obser-
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vation as can be seen from Fig.. Zhe probability that for driven by identical noise, which we termstbchastic coher-
the first time a site belongs to a structure of length at  ence It is observed that there is a phenomenal increase in
time stepT is then P4(T)x(1—Py) " P,. Therefore the abundance of coherent structures of all scales due to noise.
average ofT is given asT(=L)=3%_,TPyT)x=(Pg) 2, By considering the stability matrix o_Iurlng three time steps,
ie. we have been able to show that noise can reduce instability
' of these structures. Distribution of these structures shows a
power-law decay with length of the structure, with an expo-
T_§(>|_)oc|_a*2, (6)  nent which shows a minimum at some intermediate noise
strength. Average length as well as average lifetime of these
structures exhibit characteristic maxima at a noise strength
This demonstrates that full-lattice cohererfodth finite §)  quite close to the previous value. This bell-shaped feature is
will be observed in a finite lattice. Figure 2 tells us thatsimilar to that of stochastic resonance, which is a temporal
a—2~0.22 forW=0.6, whereas we obtain [relation(5)] ~ Phenomenon. However, we emphasize that our system does
~0.3. We believe the discrepancy to be due to boundaryot have any intrinsic length scale, whereas stochastic reso-
corrections, since Eq6) is obtained for an infinite lattice nance is associated with a particular time scale. These obser-
whereas Eq(5) holds for finite lattices. vations demonstrate that noise can play a major role in for-

The above procedure was also carried out for several vaflition as well as in evolutionary dynamics of structures in
ues ofe ranging from 0.1 to 0.9, as well as for nonlinearity spatially extended systems.
parameterw between 3.6 and 4. All the features remain es-  The authors thank H. Cerdeira and P. M. Gade for useful
sentially the same. We have also observed similar behaviafiscussions. One of the authaiél.R.) acknowledges Uni-
with periodic-boundary conditions for the lattice. versity Grants Commissiofindia) and the otherR.E.A)

In conclusion, we have reported a new phenomenon obacknowledges Department of Science and Technolbgy
served in a chaotically evolving one-dimensional CML dia) for financial assistance.
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