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Observation of stochastic coherence in coupled map lattices
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~Received 17 May 1996!

Chaotic evolution ofstructuresin a coupled map lattice driven by identical noise on each site is studied~a
structure is a group of neighboring lattice sites for which values of the dynamical variable follow a certain
predefined pattern!. The number of structures is seen to follow apower-law decaywith length of the structure
for a given noise strength. An interesting phenomenon, which we callstochastic coherence, is reported in
which a rise ofbell-shapedtype in abundance and lifetimes of these structures is observed for a range of
noise-strength values.@S1063-651X~97!03803-8#

PACS number~s!: 05.45.1b, 47.52.1j
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The coupled map lattice~CML! model has been observe
to exhibit diverse spatiotemporal patterns and structures@1#,
and serves as a simple model for experimental systems
as Rayleigh-Be´nard convection, Taylor-Couette flow
Belousov-Zhabotinsky reaction, etc.@2#. A major interest is
in understanding formation of structures, localized in bo
space and time, in turbulent fluid@3#. The role of fluctuations
in onset, selection, and evolution of such patterns and st
tures has been studied in some detail@4,5#. In this paper we
report a novel phenomenon observed in the dynamics
structures in a chaotically evolving one-dimensional CM
driven by identical noise. By astructurewe mean a group o
neighboring sites whose variable values follow a certain p
specified spatial pattern. Distribution of these structures d
ing evolution of the lattice shows that their numbers exh
power-law decaywith length of the structure for a give
noise strength, with an exponent which is a function of no
strength. It is observed that the average length of these s
tures shows a bell-shaped curve with a characteristic pea
a function of noise strength. Similar behavior is observed
average lifetime of these structures during their evoluti
within the same range of noise values. We call this pheno
enonstochastic coherence.

We consider a one-dimensional CML of the form

xt11~ i !5~12«!F„xt~ i !…1
«

2
@F„xt~ i21!…1F„xt~ i11!…#

1h t , ~1!

where xt( i ), i51,2, . . . ,L is the value of the variable lo
cated at sitei at time t, h t is the additive noise,« is the
~nearest neighbor! coupling strength, andL is the size of the
lattice. Logistic functionF(x)5mx(12x) is used as loca
dynamics governing nonlinear site evolution with nonline
ity parameterm. We have used both open-boundary con
tions xt(0)5xt(1), xt(L11)5xt(L), and periodic-bound-
ary conditionsxt(L1 i )5xt( i ), for our system. For noise
h t we have used a uniformly distributed random numb
bounded between2W and1W, whereW is defined as the
noise-strengthparameter.

We define astructureas a region of space in which th
dynamical variables at sites within this region follow a pr
defined spatial pattern@6#. To study coherence in the syste
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we choose a spatial pattern where the difference in the va
of the variables of neighboring sites within the structure
less than a predefined small positive number, sayd, i.e.,
uxt( i )2xt( i61)u<d. We calld thestructure parameter. We
look for such patterns, or coherent structures, to appear in
course of evolution of the model given by Eq.~1!.

We now present our main observations. Values ofm, «,
andL are chosen so that the resultant dynamics of the sys
is chaotic. Coherent structures with length,3 ~sites! and
lifetime ,2 ~time steps! are disregarded in our observation
Values forW are chosen within the range@0,1#. Figure 1
shows a plot~on log-log scale! of distribution of number
n( l ) vs lengthl of structures for different values ofW, with
m54, «50.6, d50.0001, and L510 000, and open-
boundary conditions are used. The power-law nature of
cay ofn( l ) is clearly evident, and has a form

FIG. 1. Plot of variation of numbern( l ) of structures with
length l for a lattice with sizeL510 000, for different values of
noise strengthW as indicated. Parameters chosen are coupl
strength parameter«50.6, structure parameterd50.0001, and non-
linearity parameterm54. Open-boundary conditions are used. Da
are obtained for 100 000 iterates per initial condition and four init
conditions.
2422 © 1997 The American Physical Society
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n~ l !} l2a, ~2!

wherea is the power-law exponent. This indicates that t
system does not have any intrinsic length scale. It may
noted that in the absence of noise (W50) the decay is mani-
festly exponential@6#. Exponenta ~i.e., slope of the log-log
plot in Fig. 1! is seen to depend on noise-strengthW. This
fact is corroborated in Fig. 2, which shows a plot ofa vs
W for the same parameter values as in Fig. 1. The expo
is exhibiting a clear minimum for values ofW around 0.6.
We define average lengthl̄ of a structure as
l̄5( ln( l )/(n( l ). In Fig. 3 we plot variation ofl̄ withW for
values of parameters as in Fig. 1. The plot exhibits abell-
shapednature within a fairly narrow range ofW around

FIG. 2. Variation of exponenta @relation ~2!# with noise
strengthW plotted for parameter values as in Fig. 1.

FIG. 3. Plot of variation of average lengthl̄ of structure with
noise strengthW, with parameters as stated in Fig. 1.
e
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value 0.6. It may be noted that the minimum ofa in Fig. 2
also occurs forW quite close to this value.

We call the phenomenon observed abovestochastic co-
herence. This is similar to the stochastic resonance pheno
enon which shows a bell-shaped behavior of temporal
sponse as a function of noise strength@7#. However, one may
note that our system does not have any intrinsic length sc
whereas in stochastic resonance noise resonates with a g
time scale; hence our use of the word coherence rather
resonance@8#. In stochastic resonance noise transfers ene
to the system at a characteristic frequency, whereas in
chastic coherence noiseinduces coherencein the system. At
this stage it is not clear to us how noise is inducing coh
ence in the system. However, absence of any length s
over the entire range of noise seems to indicate existenc
weak self-organization in the system induced by noise.

In this context it should be noted that if a uniform-devia
random number is taken as site variable, then the probab
of a site to belong to a structure of lengthl is
pd( l )' l (2d) l21(122d)2, whered is the structure param
eter introduced earlier. Hence the number of such structu
in a lattice of size L is given by nd( l )'
L(2d) l21(122d)2. This shows an exponential decay of th
number of such structures with length, which is to be co
trasted with the power-law form~2! obtained for our lattice.

It is possible to show how noise helps to reduce instabi
of the structures, thereby increasing their abundance. Le
consider stability matrixM of a homogeneous stat
$ . . . ,xt , xt ,xt , . . . % ~this may be thought of as a larg
structure withd50 for simplicity!. At time t11 the matrix
takes the simple formMt115JFt8 , whereJ stands for the
familiar tridiagonal matrix~with diagonal elements 12« and
off-diagonal elements«/2 on either side! and Ft8[
F8(xt)([dF/dx)5m(122xt). After two time steps, we
get the stability matrix for three time steps asS35
Mt11Mt12Mt135J3Ft8Ft118 Ft128 5J3Ft8m

2@(122Ft)$122
mFt(12Ft)%16mh t

2(122Ft)22h t$11m(126Ft16Ft
2)}

24mh t
322h t11(122Ft)14h th t11]. For d-correlated

noise with uniform distribution and zero mean~which is the
case here!, after averaging the above expression over no
distribution one gets nonzero contribution due to noise o
from the term quadratic inh:

^S3&5J3~Ft8!2m@122mFt~12Ft!16m^h t
2&#, ~3!

where^ & denotes averaging over noise. For our lattice w
localized structures in the backdrop of spatiotemporal ch
we found the invariant density to be no longer symmetr
with larger weight for values of variable above 0.5. Avera
ing expression ~3! over this density makes the term
122mFt(12Ft) negative. Adding positive contribution o
noise to it results in reduction of eigenvalue of the mat
S3 and hence consequent reduction in instability of the st

To study evolutionary aspects of these coherent struct
we obtained distribution of numbern(t) of structures vs
their lifetimest for differentW. This is shown in Fig. 4~on
a log-linear scale!. It exhibits decrease ofn(t) with t with a
stretched exponentialtype of decay having a form

n~t!}exp~2const3tb!, ~4!
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whereb depends onW. We define average lifetimet̄ of a
structure ast̄5(tn(t)/(n(t). In Fig. 5 we plott̄ vsW for
parameter values as in Fig. 4. The graph also shows a b
shaped feature with maximum forW around 0.6. ThisW
value is close to that corresponding to the extrema in Figs
and 3.

In order to ascertain the chaotic nature of system evo
tion we have calculated Lyapunov exponent spectra for o
system. We find a number of Lyapunov exponents to
positive, implying that the underlying evolution is chaotic
Maximum Lyapunov exponentlmax shows a minimum
around noise strength 0.6@9#. We have studied variation of
l spectrum with coupling strength«. lmax remains fairly
constant for 0.2<«<0.8 for the entire range ofW. Behavior

FIG. 4. Plot of variation of numbern(t) of structures with
lifetime t, with conditions as in Fig. 1.

FIG. 5. Variation of average lifetimet̄ of structures with noise
strengthW shown for parameters as stated earlier.
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of l̄ with « is also investigated. It is found thatl̄ increases
monotonically with« for all W. This fact is quite contradic-
tory to what is expected fromlmax. This indicates that the
Lyapunov exponent alone cannot be used for proper cha
terization of spatiotemporal features of the system. We h
also obtained the power spectrum of the time series of
dynamical variable for a given site. The plot does not sh
any characteristic frequency and supports chaotic behav
In addition, we have calculated the power spectrum of val
xt( i ), i51, . . . ,L at a given time. The nature of the spe
trum confirms our earlier observation that the system d
not have any intrinsic length scale. It may appear that
behavior of our system is similar to the spatiotemporal int
mittency phenomenon@10#. However, our system does no
show any regular burst-type feature~indicative of intermit-
tency! in time; as already noted, the power spectrum of tim
series does not have any distinctive peak for the entire ra
of noise strength. Thus what we observe is developmen
appreciable coherence induced by noise in the system un
going spatially intermittent and temporally chaoticevolu-
tion.

On quite a few occasions the entire lattice is seen
evolve as a single coherent structure to within the struct
parameterd. We have studied the lifetime of these cohere
structures. Full lattice coherence appears forW above a
value around 0.4. The interesting thing is that occasion
this state is seen to persist for fairly long durations~at times
as long as 200 time steps or more!, but eventually the coher
ence is seen to break up. This demonstrates that for our
tem the synchronized state is not a stable attractor.

However, in rare instances our system has been foun
get into an apparently synchronized state after a very la
time ~larger than 107 steps!. This is obtained because of th
finite accuracy of computation which cannot distinguish
unstable synchronized state from a stable one@11#. As dem-
onstrated in the following, for our system this type of beha
ior is an artifact resulting due to combination of finite size
the lattice and finite accuracy. Let us denote byT̄ the average
of time steps required for first occurrence of full lattice c
herence, the average taken over different initial conditio
We have studied variation ofT̄ with structure parameterd
for a fixed lattice sizeL, which shows a definitive power law
of the form T̄L}d2g, whereg is the power-law exponent
This indicates that the synchronized state, i.e., full latt
coherent structure withd50, cannot be reached. We hav
also investigatedT̄ vs L variation for a fixedd. We see a
power-law behavior of form

T̄d}Ln, ~5!

wheren is the power-law exponent. Thus even full lattic
coherence with finited cannot be achieved asL→`.

We now show that the existence of full-lattice coheren
with nonzerod ~distinct from synchronized state! in a finite
lattice is essentially a consequence of power-law variat
~2! of n( l ) with l . From relation~2! the probability of a site
to belong to a structure of lengthl is pd( l )} l .l

2a5 l 12a.
Therefore the probability of a site to belong to a structure
length >L is P0[Pd(>L)}(L

`l 12a'*L
`dll 12a}L22a

~for a.2, which is the case in the entire range of our obs
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vation as can be seen from Fig. 2!. The probability that for
the first time a site belongs to a structure of length>L at
time stepT is then Pd(T)}(12P0)

T21P0. Therefore the
average ofT is given asT̄d(>L)5(T51

` TPd(T)}(P0)
21,

i.e.,

T̄d~>L !}La22. ~6!

This demonstrates that full-lattice coherence~with finite d)
will be observed in a finite lattice. Figure 2 tells us th
a22'0.22 forW50.6, whereas we obtainn @relation ~5!#
'0.3. We believe the discrepancy to be due to bound
corrections, since Eq.~6! is obtained for an infinite lattice
whereas Eq.~5! holds for finite lattices.

The above procedure was also carried out for several
ues of« ranging from 0.1 to 0.9, as well as for nonlineari
parameterm between 3.6 and 4. All the features remain e
sentially the same. We have also observed similar beha
with periodic-boundary conditions for the lattice.

In conclusion, we have reported a new phenomenon
served in a chaotically evolving one-dimensional CM
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driven by identical noise, which we termedstochastic coher-
ence. It is observed that there is a phenomenal increase
abundance of coherent structures of all scales due to no
By considering the stability matrix during three time step
we have been able to show that noise can reduce instab
of these structures. Distribution of these structures show
power-law decay with length of the structure, with an exp
nent which shows a minimum at some intermediate no
strength. Average length as well as average lifetime of th
structures exhibit characteristic maxima at a noise stren
quite close to the previous value. This bell-shaped featur
similar to that of stochastic resonance, which is a tempo
phenomenon. However, we emphasize that our system
not have any intrinsic length scale, whereas stochastic r
nance is associated with a particular time scale. These ob
vations demonstrate that noise can play a major role in
mation as well as in evolutionary dynamics of structures
spatially extended systems.
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